Classify Trees of Sentimental Mood
As previous put, the information content to classify the root sentiment label based on the composition of it children labels decreases with increasing levels in parsing tree (the depth from root to the child node). However, in order to qualify the importance of tree features (not just quantify), decision tree will be used to measure how important level and label at children node as joint features to classify root sentiment label. Firstly, I would like to assume syntatic structure of each sentence is well captured by the parsing trees of highest statical significance; therefore suffice to use the most significant one for study. By assuming this, the uncertainty of children labels due to parsing tree construction could be greatly excluded and the true labels assigned through Amazon Turfs crowd work will be used. By doing so, an emperical upper bound of root sentiment classification error based on level and label joint features can be estimated. In the following subsequent work, I will replace children labels with random predictions to obtain a lower error bound of how the uncertainty of children label predictions introduced into classification framework and decrease the accuracy.